National Semiconductor

LM592 Differential Video Amplifier

General Description

The LM592 is a two stage differential input, differential output, wideband video amplifier. The use of internal seriesshunt feedback gives wide bandwidth with low phase distortion and high gain stability. Emitter follower outputs provide low output impedances necessary to drive capacitive loads. The 14-lead version of this device offers fixed gains of 100 and 400, selected without the addition of external components, while the 8-lead part offers a fixed gain of 400. Both the 14- and 8-lead parts allow the gain to be adjusted from 0 to 400 with the addition of a single resistor. This gain-adjustment capability also allows the device to be configured as a high pass, low pass, or band pass filter.

The LM592 is ideal for use in magnetic memory systems. The device is also very useful as a video and pulse amplifier in video recorders and other communications systems.

Features

- 120 MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required

Applications

- Disc file memories
- Magnetic tape systems
- Thin film or plated wire memories
- Wide band video amplifiers

LM592 Differential Video Amplifier

September 1990

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage $\pm 5V$

Differential input voltage	± 0 V
Common Mode Input Voltage	±6V
V _{supply}	±8V
Output Current	10 mA
Power Dissipation (Note 1)	500 mW
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	260°C

 Small Outline Package
 215°C

 Vapor Phase (60 seconds)
 220°C

 Infrared (15 seconds)
 220°C

 See AN-450 "Surface Mounting Methods and Their Effect
 on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings Temperature Range

Temperature Range	
Supply Voltage Range	

 $0^{\circ}C$ to $70^{\circ}C$ $\pm 3V$ to $\pm 8V$

			LM592			
Characteristics	Test Circuit	Test Conditions	Тур	Tested Limit (Note 6)	Design Limit (Note 7)	Units (Limit)
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3)	1	$R_L = 2 k\Omega, V_{OUT} = 3 V_{PP}$	400 100	250 600 80 120	210 620 75 120	(Min) (Max) (Min) (Max)
Bandwidth Gain 1 Gain 2	2		40 90			MHz MHz
Rise Time Gain 1 Gain 2	2	V _{OUT} = 1 V _{PP}	10.5 4.5		12	ns ns (Max)
Propagation Delay Gain 1 Gain 2	2	V _{OUT} = 1 V _{PP}	7.5 6		10	ns ns (Max)
Input Resistance Gain 1 Gain 2			4 23		10	kΩ kΩ (Min)
Input Capacitance		Gain 2 (Note 3)	2			pF
Input Offset Current			0.4	5	6	μA (Max)
Input Bias Current			9	26	31	μΑ (Max)
Input Noise Voltage		BW = 1 kHz to 10 MHz	12			μV rms
Input Voltage Range	1			±1	± 1	V (Min)
Common Mode Rejection Ratio Gain 2 Gain 2	1	$V_{CM} = \pm 1V$ $V_{CM} = \pm 1V$, f = 5 MHz	86 60	60	50	dB (Min) dB
Power Supply Rejection Ratio Gain 2	1	$\Delta V_{S} = \pm 0.5 V$	70	50	50	dB (Min)
Output Offset Voltage Gain 1 Gain 2	1	$R_L = \infty$	0.35	1.5 0.75	1.5 0.75	V (Max)
Output Common Mode Voltage (Note 4)	1	$R_L = \infty$	2.9	2.4 3.4	2.4 3.4	V (Min) V (Max)
Output Voltage Swing	1	$R_L = 2k$	4	3	3	V (Min)
Output Sink Current			3.6	2.5	2.3	mA (Min)
Output Resistance			20			Ω
Power Supply Current	1	$R_L = \infty$	18	24	24	mA (Max)

Note 1: For operation at elevated temperatures, these devices must be derated based on the thermal resistance θ_{jA} and $T_{jmax} = 150^{\circ}$ C. For those devices in an 8-pin package, $\theta_{JA} = 117^{\circ}$ C/W for the "N" package and 182°C/W for the "M" package. For those devices in a 14-pin package, $\theta_{JA} = 90^{\circ}$ C/W for the "N" package, 135°C/W for the "M" package, and 78°C/W for the "J" package.

Note 2: This gain applies to both the 8-pin and 14-pin device. To obtain this gain when using the 14-pin device, connect pins G1A and G1B together.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications