4-BIT MAGNITUDE COMPARATOR

The MC54/74F85 is a 4-Bit Magnitude Comparator which compares two 4 -Bitwords $\left(\mathrm{A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}\right), \mathrm{A}_{3}, \mathrm{~B}_{3}$ beingthemostsignificantinputs. Operation is not restricted to binary codes; the device will work with any monotonic code. Three Outputs are provided: "A greater than B" ($0 A>B$), "A less than B" ($0 A$ $<B)$, "A equal to B " $\left(O_{A}=B\right)$. Three Expander Inputs, $I_{A}>B, I_{A}<B, I_{A}=B$, allow cascading without external gates. For proper compare operation, the Expander Inputs to the least significant position must be connected as follows: $\mathrm{I}_{\mathrm{A}}<$ $B=I_{A}>B=L, I_{A}=B=H$. For serial (ripple) expansionthe $0 A>B, A_{A}<B$ Outputs are connected respectively to the $I_{A}>B$ and $I_{A}=B$ inputs of the next most significant comparator, as shown in Figure 1. Refer to applications section of data sheet for high speed method of comparing large words.

- High Impedance NPN Base Inputs for Reduced Loading ($20 \mu \mathrm{~A}$ in HIGH and LOW States)
- Magnitude Comparison of any Binary Words
- Serial or Parallel Expansion Without Extra Gating
- ESD > 4000 Volts

CONNECTION DIAGRAM

MC54/74F85

4-BIT MAGNITUDE COMPARATOR

FAST™ ${ }^{\text {T }}$ SCHOTTKY TTL

N SUFFIX
PLASTIC
CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

MC74FXXJ	Ceramic
MC74FXXN	Plastic
MC74FXXD	SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage	54, 74	4.5	5.0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
${ }^{\mathrm{OH}}$	Output Current - High	54, 74			-1.0	mA
lOL	Output Current - Low	54, 74			20	mA

FUNCTION TABLE

Comparing Inputs				Expansion Inputs			Outputs		
$\mathrm{A}_{3}, \mathrm{~B}_{3}$	$\mathrm{A}_{2}, \mathrm{~B}_{2}$	$\mathrm{A}_{1}, \mathrm{~B}_{1}$	$\mathrm{A}_{0}, \mathrm{~B}_{0}$	$\mathrm{I}_{\mathrm{A}}>\mathrm{B}$	$\mathrm{I}_{\mathrm{A}}<\mathrm{B}$	$\mathrm{I}_{\mathrm{A}}=\mathrm{B}$	A > B	A < B	A = B
$\mathrm{A}_{3}>\mathrm{B}_{3}$	X	X	X	X	X	X	H	L	L
$\mathrm{A}_{3}<\mathrm{B}_{3}$	X	X	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}>\mathrm{B}_{2}$	X	x	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}<\mathrm{B}_{2}$	X	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}>\mathrm{B}_{1}$	X	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}<\mathrm{B}_{1}$	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}>\mathrm{B}_{0}$	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$A_{0}<B_{0}$	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	H	L	L	H	L	L
$A_{3}=B_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	H	L	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	L	H	L	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	X	X	H	L	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	H	H	L	L	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	L	L	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage	
V_{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \mathrm{IN}=-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	2.5			V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		2.7					$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage			0.5	V	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}$	
${ }^{\text {IIH }}$	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
				0.1	mA	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	
Ios	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
${ }^{\text {I C C }}$	Total Supply Current $\text { HIGH } \mathrm{V}_{\mathrm{IN}}=\mathrm{HIGH}$			50	mA	$V_{C C}=\mathrm{MAX}$	
	LOW $A_{n}=B_{n}=I_{A-B}=G N D: I_{A>B}=I_{A<B}=4.5 \mathrm{~V}$			54			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

MC54/74F85

Figure 1. Comparison of Two 24-Bit Words

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	54/74F		54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A or B Input to A < B, A > B Output	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 14 \\ 16.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13 \\ 15.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	A or B Input to $\mathrm{A}=\mathrm{B} \text { Output }$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 14 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 15 \\ 15.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 14 \\ 14.5 \end{gathered}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tpHL } \end{aligned}$	$\mathrm{I}_{\mathrm{A}<\mathrm{B}}$ and $\mathrm{I}_{\mathrm{A}=\mathrm{B}}$ Input to $\mathrm{A}>\mathrm{B}$ Output	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10 \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=\mathrm{B} \text { Input to } \\ & \mathrm{A}=\mathrm{B} \text { Output } \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 10 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 13 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 12 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$I_{A>B}$ and $I_{A=B}$ Input to $\mathrm{A}<\mathrm{B}$ Output	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	3.0 2.0	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns

The expansion inputs ${ }_{A>B},\left.\right|_{A=B}$, and $I_{A<B}$ are the least significant bit positions. When used for series expansion, the $A>B, A=B$, and $A<B$ outputs of the least significant word are connected to the corresponding $\mathrm{I}_{\mathrm{A}}>\mathrm{B}, \mathrm{I}_{\mathrm{A}}=\mathrm{B}$, and $\mathrm{I}_{\mathrm{A}}<\mathrm{B}$ inputs of the next higher stage. Stages can be added in this manner to any length, but a propagation delay penalty of about 15 ns
is added with each additional stage. For proper operation the expansion inputs of the least significant word should be tied as follows: $I_{A}>B=L O W, I_{A=B}=H I G H$, and $I_{A}<B=L O W$.

NOTE:
This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 2. Logic Diagram

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

