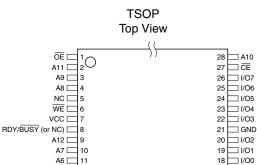
Features

- Fast Read Access Time 120 ns
- Fast Byte Write 200 µs or 1 ms
- Self-timed Byte Write Cycle
 - Internal Address and Data Latches
 - Internal Control Timer
 - Automatic Clear Before Write
- Direct Microprocessor Control
 - READY/BUSY Open Drain Output
 - DATA Polling
- Low Power
 - 30 mA Active Current
 - 100 µA CMOS Standby Current
- High Reliability
 - Endurance: 10⁴ or 10⁵ Cycles
 - Data Retention: 10 Years
- 5V \pm 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-wide Pinout
- Commercial and Industrial Temperature Ranges


Description

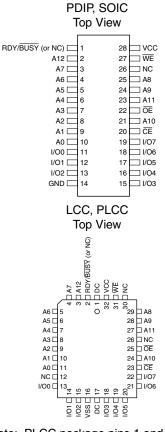
The AT28C64 is a low-power, high-performance 8,192 words by 8-bit nonvolatile electrically erasable and programmable read only memory with popular, easy-to-use features. The device is manufactured with Atmel's reliable nonvolatile technology.

(continued)

Pin Configurations

Pin Name	Function		
A0 - A12	Addresses		
CE	Chip Enable		
ŌE	Output Enable		
WE	Write Enable		
I/O0 - I/O7	Data Inputs/Outputs		
RDY/BUSY	Ready/Busy Output		
NC	No Connect		
DC	Don't Connect		

A5 🖂 12


A4 🗖 13

A3 🗖 14

17 🗖 A0

16 🗖 A1

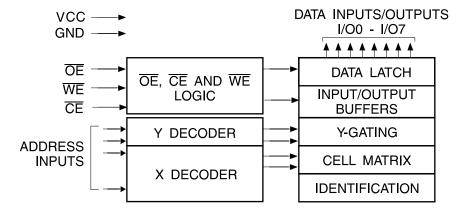
15 🗖 A2

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

64K (8K x 8) Parallel EEPROMs

AT28C64 AT28C64X

Rev. 0001H-12/99


The AT28C64 is accessed like a Static RAM for the read or write cycles without the need for external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes two methods for detecting the end of a write cycle, level detection of RDY/BUSY (unless pin 1 is N.C.) and DATA Polling of I/O₇. Once the end of a write

Block Diagram

cycle has been detected, a new access for a read or write can begin.

The CMOS technology offers fast access times of 120 ns at low power dissipation. When the chip is deselected the standby current is less than 100 μ A.

Atmel's AT28C64 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32 bytes of EEPROM are available for device identification or tracking.

Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V_{CC} + 0.6V
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Device Operation

READ: The AT28C64 is accessed like a Static RAM. When \overrightarrow{CE} and \overrightarrow{OE} are low and \overrightarrow{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever \overrightarrow{CE} or \overrightarrow{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C64 is similar to writing into a Static RAM. A low pulse on the WE or CE input with OE high and CE or WE low (respectively) initiates a byte write. The address location is latched on the falling edge of WE (or CE); the new data is latched on the rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t_{WC} , a read operation will effectively be a polling operation.

FAST BYTE WRITE: The AT28C64E offers a byte write time of 200 μ s maximum. This feature allows the entire device to be rewritten in 1.6 seconds.

READY/BUSY: Pin 1 is an open drain RDY/BUSY output that can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write. The open drain connection allows for OR-tying of several devices to the

same RDY/BUSY line. The RDY/BUSY pin is not connected for the AT28C64X.

DATA POLLING: The AT28C64 provides DATA Polling to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O_7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways: (a) V_{CC} sense – if V_{CC} is below 3.8V (typical) the write function is inhibited; (b) V_{CC} power on delay – once V_{CC} has reached 3.8V the device will automatically time out 5 ms (typical) before allowing a byte write; and (c) write inhibit – holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C64 may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: An extra 32 bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12 \pm 0.5V$ and using address locations 1FE0H to 1FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

DC and AC Operating Range

		AT28C64-12	AT28C64-15	AT28C64-20	AT28C64-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply		$5V\pm10\%$	$5V\pm10\%$	$5V\pm10\%$	$5V\pm10\%$

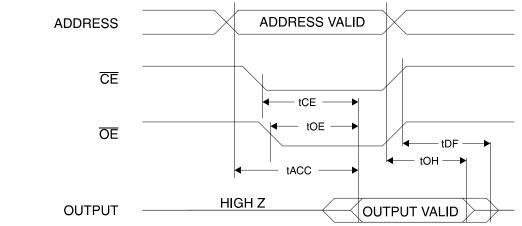
Operating Modes

Mode	CE	ŌĒ	WE	I/O
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}
Write ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	High Z
Write Inhibit	Х	Х	V _{IH}	
Write Inhibit	Х	V _{IL}	Х	
Output Disable	Х	V _{IH}	Х	High Z
Chip Erase	V _{IL}	V _H ⁽³⁾	V _{IL}	High Z

Notes: 1. X can be V_{IL} or V_{IH} .

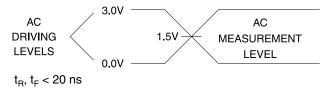
2. Refer to AC programming waveforms.

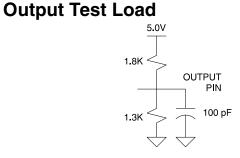
3. $V_{H} = 12.0V \pm 0.5V$.


DC Characteristics

Symbol	Parameter	Condition	Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μA
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CC}} - 0.3\text{V} \text{ to } \text{V}_{\text{CC}} + 1.$		100	μA	
			Com.		2	mA
I _{SB2}	V _{CC} Standby Current TTL	$\overline{CE} = 2.0V$ to $V_{CC} + 1.0V$	Ind.		3	mA
		rent AC $\frac{f = 5 \text{ MHz; } I_{OUT} = 0 \text{ mA}}{\overline{CE} = V_{IL}}$	Com.		30	mA
I _{CC}	V _{CC} Active Current AC		Ind.		45	mA
V _{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage			2.0		V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA = 4.0 mA for RDY/BUSY			0.45	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA		2.4		V

AC Read Characteristics


		AT28C64-12		AT28C64-15		AT28C64-20		AT28C64-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC}	Address to Output Delay		120		150		200		250	ns
$t_{CE}^{(1)}$	CE to Output Delay		120		150		200		250	ns
$t_{OE}^{(2)}$	OE to Output Delay	10	60	10	70	10	80	10	100	ns
$t_{DF}^{(3)(4)}$	\overline{CE} or \overline{OE} High to Output Float	0	45	0	50	0	55	0	60	ns
t _{OH}	Output Hold from \overline{OE} , \overline{CE} or Address, whichever occurred first	0		0		0		0		ns


AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

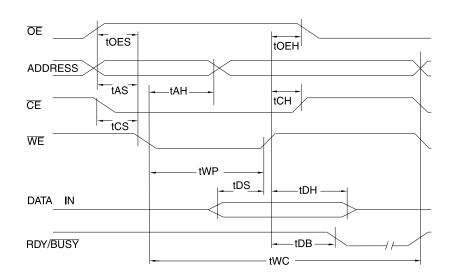
Input Test Waveforms and Measurement Level

Pin Capacitance

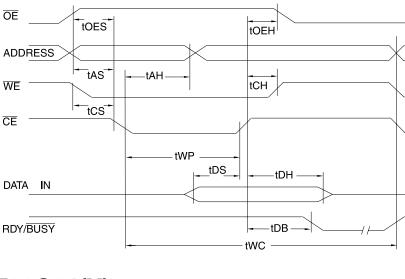
 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Мах	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.



AC Write Characteristics

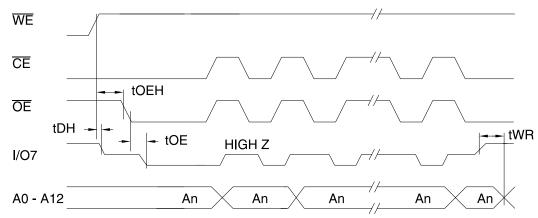

Symbol	Parameter		Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	10		ns	
t _{AH}	Address Hold Time	50		ns	
t _{WP}	Write Pulse Width (\overline{WE} or \overline{CE})	100	1000	ns	
t _{DS}	Data Setup Time	50		ns	
t _{DH} , t _{OEH}	Data, OE Hold Time	Data, OE Hold Time			
t _{CS} , t _{CH}	\overline{CE} to \overline{WE} and \overline{WE} to \overline{CE} Setup and Ho	0		ns	
t _{DB}	Time to Device Busy		50	ns	
t _{wc}		AT28C64		1	ms
	Write Cycle Time (option available)	AT28C64E		200	μs

AC Write Waveforms

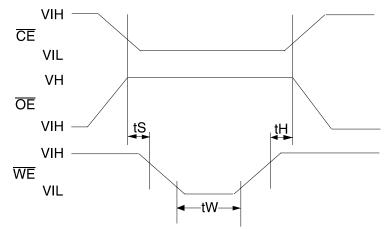
WE Controlled

CE Controlled

AT28C64(X)

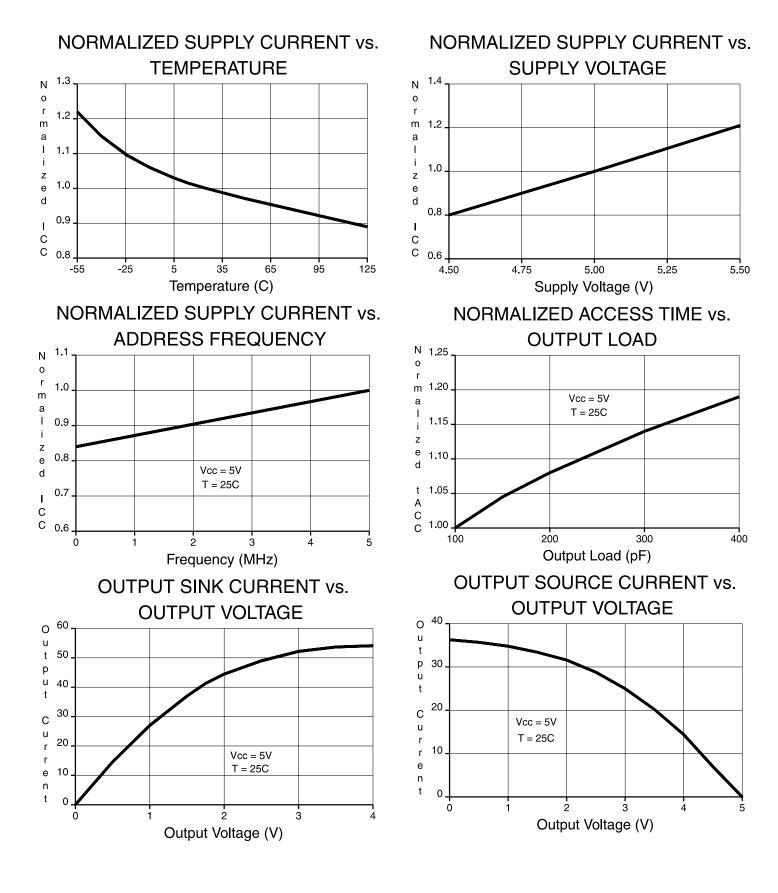

Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns


Notes: 1. These parameters are characterized and not 100% tested.

2. See "AC Read Characteristics".

Data Polling Waveforms


Chip Erase Waveforms

$$\begin{split} t_S &= t_H = 1 \ \mu \text{sec (min.)} \\ t_W &= 10 \ \text{msec (min.)} \\ V_H &= 12.0 \pm 0.5 V \end{split}$$

8

AT28C64 Ordering Information

t _{ACC}	ACC I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	30	0.1	AT28C64(E)-12JC AT28C64(E)-12PC AT28C64(E)-12SC AT28C64(E)-12TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	45	0.1	AT28C64(E)-12JI AT28C64(E)-12PI AT28C64(E)-12SI AT28C64(E)-12TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)
150	30	0.1	AT28C64(E)-15JC AT28C64(E)-15PC AT28C64(E)-15SC AT28C64(E)-15TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	45	0.1	AT28C64(E)-15JI AT28C64(E)-15PI AT28C64(E)-15SI AT28C64(E)-15TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)
200	30	0.1	AT28C64(E)-20JC AT28C64(E)-20PC AT28C64(E)-20SC AT28C64(E)-20TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	45	0.1	AT28C64(E)-20JI AT28C64(E)-20PI AT28C64(E)-20SI AT28C64(E)-20TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)
250	30	0.1	AT28C64(E)-25JC AT28C64(E)-25PC AT28C64(E)-25SC AT28C64(E)-25TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	45	0.1	AT28C64(E)-25JI AT28C64(E)-25PI AT28C64(E)-25SI AT28C64(E)-25TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)

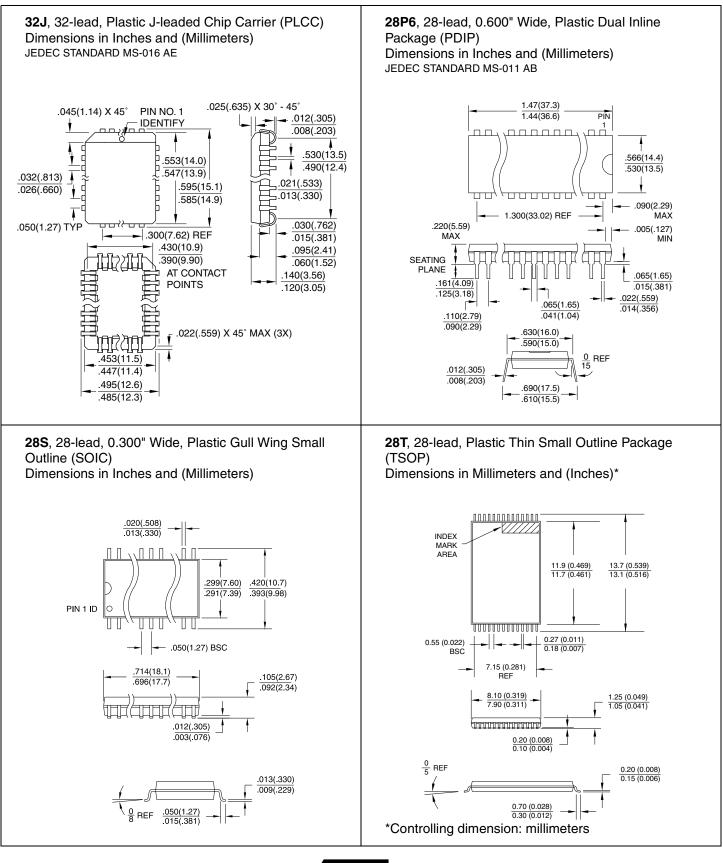
	Package Type					
32J	23 32-lead, Plastic J-leaded Chip Carrier (PLCC)					
28P6	P6 28-lead, 0.600" Wide, Plastic Dull Inline Package (PDIP)					
28S	28S 28-lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)					
28T	28-lead, Plastic Thin Small Outline Package (TSOP)					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1 ms					
E	E High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200 μs					

AT28C64X Ordering Information

t _{ACC}	I _{cc}	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	30	0.1	AT28C64X-15JC	32J	Commercial
			AT28C64X-15PC	28P6	(0°C to 70°C)
			AT28C64X-15SC	28S	
			AT28C64X-15TC	28T	
	45	0.1	AT28C64X-15JI	32J	Industrial
			AT28C64X-15PI	28P6	(-40°C to 85°C)
			AT28C64X-15SI	28S	
			AT28C64X-15TI	28T	
200	30	0.1	AT28C64X-20JC	32J	Commercial
			AT28C64X-20PC	28P6	(0°C to 70°C)
			AT28C64X-20SC	28S	
			AT28C64X-20TC	28T	
	45	0.1	AT28C64X-20JI	32J	Industrial
			AT28C64X-20PI	28P6	(-40°C to 85°C)
			AT28C64X-20SI	28S	
			AT28C64X-20TI	28T	
250	30	0.1	AT28C64X-25JC	32J	Commercial
			AT28C64X-25PC	28P6	(0°C to 70°C)
			AT28C64X-25SC	28S	
			AT28C64X-25TC	28T	
	45	0.1	AT28C64X-25JI	32J	Industrial
			AT28C64X-25PI	28P6	(-40°C to 85°C)
			AT28C64X-25SI	28S	
			AT28C64X-25TI	28T	

Valid Part Numbers

The following table lists standard Atmel products that can be ordered.


Device Numbers	Speed	Package and Temperature Combinations
AT28C64 X	12	JC, JI, PC, PI, SC, SI, TC, TI
AT28C64 X	15	JC, JI, PC, PI, SC, SI, TC, TI
AT28C64 X	20	JC, JI, PC, PI, SC, SI, TC, TI
AT28C64 X	25	JC, JI, PC, PI, SC, SI, TC, TI

Die Products

Reference Section: Parallel EEPROM Die Products

Package Type		
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)	
28P6	28-lead, 0.600" Wide, Plastic Dull Inline Package (PDIP)	
28S	28-lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)	
28T	28-lead, Plastic Thin Small Outline Package (TSOP)	

Packaging Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Átmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

> *Fax-on-Demand* North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Atmel:

AT28C64E-15PC AT28C64E-15PI AT28C64E-15TI AT28C64X-15JC AT28C64X-15PI AT28C64X-15PC AT28C64-25JC AT28C64-25PC AT28C64-12JC AT28C64-12JI AT28C64-20SI AT28C64-20TI AT28C64-20PI AT28C64-20JC AT28C64-20JI AT28C64-15JC AT28C64-15SC AT28C64-15TC AT28C64-15PC AT28C64E-12JC AT28C64E-12SC AT28C64-25SC AT28C64E-25JI AT28C64E-12JI AT28C64E-12JU AT28C64E-12PC AT28C64E-12PI AT28C64E-12SI AT28C64E-12SU AT28C64E-12TI AT28C64X-15JI AT28C64X-15SC AT28C64X-15SI AT28C64X-20JC AT28C64X-20JI AT28C64X-20PC AT28C64X-20PI AT28C64X-20SC AT28C64X-20SI AT28C64X-20SI AT28C64X-25JI AT28C64X-25PC AT28C64X-25PI AT28C64E-12TU AT28C64E-15JC AT28C64E-15JI AT28C64E-15SC AT28C64E-15SI AT28C64E-15TC AT28C64E-20JC AT28C64E-20JI AT28C64E-20PC AT28C64E-20PI AT28C64E-20SC AT28C64E-20SI AT28C64E-20TI AT28C64E-25JC AT28C64E-25PC AT28C64E-25PI AT28C64E-25SC AT28C64E-25SI AT28C64E-25TI AT28C64X-25SC AT28C64X-25SI